
Thanks to K. Arrigo, A. Arvay, G. Bradshaw, S. Borrett, W. Bridewell, S. Dzeroski,
H. Simon, L. Todorovski, and J. Zytkow for their contributions to this research, which
was funded by NSF Grant No. IIS-0326059 and ONR Grant No. N00014-11-1-0107.

Pat Langley
Institute for the Study of
Learning and Expertise

Center for Design Research
Stanford University

Computational Scientific Discovery:
Search for Communicable

Laws and Models

Background

Examples of Scientific Discoveries

Science is a distinguished by its reliance on formal laws, models,
and theories of observed phenomena.

We often refer to the
process of finding
such accounts as
scientific discovery.

Kepler’s laws of planetary motion Newton’s theory of gravitation Krebs’ citric acid cycle

Dalton’s
atomic
theory

3

However, most philosophers of science have avoided discovery,
believing it immune to logical analysis. Popper (1934) wrote:

The initial stage, the act of conceiving or inventing a theory, seems
to me neither to call for logical analysis nor to be susceptible of
it … My view may be expressed by saying that every discovery
contains an ‘irrational element’, or ‘a creative intuition’ …

Hempel and many others also believed discovery was inherently
irrational and beyond understanding.

However, advances made by two fields – cognitive psychology
and artificial intelligence – in the 1950s suggested otherwise.

Mystical Views of Discovery

4

Scientific Discovery as Problem Solving

• Search through a space of problem states

• Generated by applying mental operators
• Guided by heuristics to make it tractable

Simon (1966) offered another view – scientific discovery is a
variety of problem solving that involves:

Heuristic search had been implicated in many cases of human
cognition, from proving theorems to playing chess.

This framework offered not only a path to understand scientific
discovery, but also ways to automate this mysterious process.

5

The Task of Scientific Discovery

We can state the discovery task in terms of the inputs provided
and the outputs produced:
• Given: A set of scientific data or phenomena to be modeled;
• Given: A space of candidate laws, hypotheses, or models stated

in an established scientific formalism;

• Given: Knowledge and heuristics for the scientific domain;

• Find: Laws or models that describe or explain the observations
(and that generalize well).

According to Simon, we can develop AI systems that carry out
heuristic search through a space of alternative accounts.

6

Einstein’s Search Succeeds At Last

Early Progress on Scientific Discovery

• Carried out search in a problem space of theoretical terms;

• Using operators that combined old terms into new ones;
• Guided by heuristics that noted regularities in data; and

• Applied these recursively to formulate higher-level relations.

For my CMU dissertation research, I adapted Simon’s ideas on
scientific discovery, developing a computer program that:

The result was Bacon (Langley, 1981), an early AI system that
rediscovered laws from the history of physics and chemistry.

I named the system after Sir Francis Bacon because it adopted a
data-driven approach to discovery.

8

Bacon on Kepler’s Third Law

D

A
B
C

d/pp

16.69

1.77
3.57
7.16

1.48

3.20
2.43
1.96

d2/p

36.46

18.15
21.04
27.40

d3/p2

53.89

58.15
51.06
53.61

moon d

24.67

5.67
8.67

14.00

The Bacon system carried out heuristic search, through a space
of numeric terms, looking for constants and linear relations.

This table shows its progression from the distance and period of
Jupiter’s moons to a term with nearly constant value.

9

Bacon on the Ideal Gas Law

Bacon rediscovered the ideal gas law, PV = aNT + bN, in three
stages, each at a different level of description.

PV = c1 PV = c2 PV = c3 PV = c4 PV = c5 PV = c6 PV = c7 PV = c8 PV = c9

c/N = d1 c/N = d2 c/N = d3

d = aT + b

Parameters for laws at one level became dependent variables in
laws at the next level, enabling discovery of complex relations.

10

Numeric Laws Discovered by Bacon

Basic algebraic relations:

• Ideal gas law PV = aNT + bN
• Kepler’s third law D3 = [(A – k) / t]2 = j
• Coulomb’s law FD2 / Q1Q2 = c
• Ohm’s law TD2 / (LI – rI) = r

Relations with intrinsic properties:

• Snell’s law of refraction sin I / sin R = n1 / n2

• Archimedes’ law C = V + i
• Momentum conservation m1V1 = m2V2

• Black’s specific heat law c1m1T1 + c2m2T2 = (c1m1+ c2m2) Tf

11

 HERBERT A. SIMON, PATRICK W. LANGLEY,
 AND GARY L. BRADSHAW

 SCIENTIFIC DISCOVERY
 AS PROBLEM SOLVING*

 The question to be addressed in this paper is whether we need a
 special theory to explain the mechanisms of scientific discovery, or
 whether those mechanisms can be subsumed as special cases of the
 general mechanisms of human problem solving. One of the authors
 has previously published several papers arguing for the latter posi
 tion.1 The main evidence adduced in those papers for the thesis that
 scientific discovery is problem solving was the behavior of some
 computer programs that, using simple problem-solving heuristics and
 selective search, were capable of discovering patterns in simple
 sequences of symbols.2 Much stronger evidence has now been pro
 vided by the performance of D. B. Lenat's AM program,3 which
 discovers mathematical concepts and conjectures theorems, and P.
 W. Langley's BACON programs,4 which discover invariants in bodies
 of empirical data. It is a main purpose of this paper to review this new
 evidence and its implications for the theory of scientific discovery.

 Of course there are several respects in which scientific discovery is
 obviously different from other instances of problem solving. First,
 scientific inquiry is a social process, often involving many scientists
 and often extending over long periods of time. Much human prob
 lem solving, especially that which has been studied in the psy
 chological laboratory, involves a single individual working for a few
 hours at most.

 A second way in which scientific inquiry differs from much, but not
 all, other problem solving is in the indefiniteness of its goals. In
 solving the Missionaries and Cannibals puzzle, we know exactly what
 we want to achieve: we want a plan for transporting the missionaries
 and cannibals across the river in the available small boat without any
 casualties from drowning or dining. Some scientific discovery is like
 that: The mathematicians who found a proof for the Four-color
 Theorem knew exactly what they were seeking. So did Adams and

 Synthese 47 (1981) 1-27. 0039-7857/81/0471-0001 $02.70
 Copyright ? 1981 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A.

This content downloaded from 171.64.70.46 on Sat, 19 Oct 2019 02:15:53 UTC
All use subject to https://about.jstor.org/terms

COGNITIVE SCIENCE 5, 31-54 (1981)

Data-Driven Discovery of Physical Laws

PAT LANGLEY
Department of Psychology

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

BACON.3 is a production system that discovers empirical laws. Although it does
not attempt to model the human discovery process in detail, it incorporates some
general heuristics that can lead to discovery in a number of domains. The main
heuristics detect constancies and trends in data, and lead to the formulation of
hypotheses and the definition of theoretical terms. Rather than making a hard
distinction between data and hypotheses, the program represents information at
varying levels of description. The lowest levels correspond to direct observations,
while the highest correspond to hypotheses that explain everything so for ob-
served. To take advantage of this representation, BACON.3 has the ability to
carry w t and relate multiple experiments, collapse hypotheses with identical
conditions, ignore differences to let similar concepts be treated as equal, and to
discover and ignore irrelevant variables. BACON.3 has shown its generality by
rediscovering versions of the ideal gas law, Kepler’s third law of planetary
motion, Coulomb‘s law, Ohm‘s law, and Golileo’s laws for the pendulum and
constant acceleration.

INTRODUCTION

Centuries ago, physicists such as Kepler and Galileo began to discover laws that
described the physical world. In this paper I describe BACON.3, a computer
program that is capable of similar discoveries. The program is named after Sir
Francis Bacon (1561-1626), an early philosopher of science. Bacon the
philosopher believed that if one gathered enough data, any regularities in those
data would leap out at the observer. BACON.3 the program discovers empirical
laws in just this way.

The research reported in this paper was supported in part by Grant HES75-22021 from the
National Science Foundation, in part by NIMH Grant MH-07722, and in part by ARPA Grant

I would like to thank Herbert Simon, Eric Johnson, Marshall Atlas, Marilyn Mantei, Doug
F33615-78-C-1551.

Lenat, and Robert Neches for discussions leading to the ideas in this paper.

31

Bacon inspired many additional systems for equation discovery:

• ABACUS (Falkenhainer, 1985) and ARC (Moulet, 1992)
• Fahrenheit (Zytkow, Zhu, & Hussam, 1990)
• COPER (Kokar, 1986) and E* (Schaffer, 1990)
• IDS (Nordhausen & Langley, 1990)
• Hume (Gordon & Sleeman, 1992)
• DST (Murata et al., 1994) and RF5 (Saito & Nakano, 1997)
▫ LaGrange (Dzeroski & Todorovski, 1994) and PRET (Stolle, 1998)
▫ SSF (Washio et al., 1997) and GP (Koza et al., 2001)

These relied on different methods but also searched for explicit
mathematical laws that matched data.

Ensuing Systems for Equation Discovery

13

Discovering Explanatory Models

The early stages of any science focus on descriptive laws that
summarize empirical regularities.

Mature sciences instead emphasize the creation of models that
explain phenomena in terms of:

• Inferred components and structures of entities

• Hypothesized processes about entities’ interactions

Explanatory models move beyond description to provide deeper
accounts linked to theoretical constructs.

Can we also develop computational systems that replicate this
more sophisticated side of scientific discovery?

14

The answer is yes. Discovery researchers have devised multiple
systems that address this challenge:
• DENDRAL (Lindsay et al.,1980) infers chemical structure from a

formula, a mass spectrogram, and chemical knowledge.
• MECHEM (Valdes-Perez, 1994) generates pathways to explain

reactions using chemical knowledge and constrained search.
• Adam (King et al., 2009) combines experimental design, data

collection, and causal inference to model yeast metabolism.
• A/ILP (Bohan et al., 2011) uses abductive logic programming to

infer a food web for 45 invertebrates from relative abundances.
• ACE (Anderson et al., 2014) uses nucleotide densities of rocks to

generate process models for how a landform was produced.
These systems also join data with knowledge to guide search,
but their models offer explanatory accounts of phenomena.

Explanatory Discovery Systems

15

1989 19901979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Bacon.1–Bacon.5 Abacus,
Coper

Fahrehneit, E*,
Tetrad, IDSN

Hume,
ARC

DST, GPN
LaGrange SDS SSF, RF5,

LaGramge

Dalton,
Stahl

RL, Progol

Gell-Mann BR-3,
Mendel PauliStahlp,

Revolver¬Dendral

¬AM Glauber NGlauber IDSQ,
Live

IE Coast, Phineas,
AbE, Kekada Mechem, CDP Astra,

GPM

HR

BR-4

Numeric laws Qualitative laws Structural models Process modelsLegend

Research on computational scientific discovery has covered many
forms of laws and models.

Two Decades of Scientific Discovery

Most early work focused on historical examples, but some recent
efforts have aided the scientific enterprise.

16

Successes of Computational Discovery

AI systems of this type have helped to discover new knowledge
in many scientific fields:

• reaction pathways in catalytic chemistry (Valdes-Perez, 1994, 1997)

• qualitative chemical factors in mutagenesis (King et al., 1996)
• quantitative laws of metallic behavior (Sleeman et al., 1997)
• quantitative conjectures in graph theory (Fajtlowicz et al., 1988)

• qualitative conjectures in number theory (Colton et al., 2000)
• temporal laws of ecological behavior (Todorovski et al., 2000)
• models of gene-influenced metabolism in yeast (King et al., 2009)

Each of these led to publications in the refereed literature of the
relevant scientific field.

17

Books on Scientific Discovery

Research on computational scientific discovery has produced a
number of books on the topic.

These further demonstrate the diversity of problems and methods
while emphasizing their underlying unity.

1987 1990 2007

18

• Emphasized the availability of large amounts of data

• Used computational methods to find regularities in the data

• Adopted heuristic search through a space of hypotheses

• Initially focused on commercial applications and data sets

During the 1990s, a new research paradigm – known as data
mining – emerged that:

Most research adopted notations invented by computer scientists,
unlike scientific discovery, which used scientific formalisms.

Data mining has been applied to scientific data, but the results
seldom bear a resemblance to scientific knowledge.

The Data Mining Movement

19

Inductive Process Modeling

Quantitative Explanatory Models

As seen, most research on computational scientific discovery
has focused on either:
• Inducing numeric laws that describe quantitative observations

(equation discovery)
• Abducing structural accounts that explain qualitative phonemena

(model construction)
But scientists in advanced fields sometimes combine features
of both activities to create models that:
• Postulate unobserved structural relations among entities
• Incorporate functional forms with numeric parameters
Can we also developed systems that discover such quantitative
explanatory models?

21

Early Work on Quantitative Explanations

There was some early research on the computational discovery
of quantitative explanations:

• Inferring abstract causal models / structural equation models
(Glymour et al., 1987; Spirtes et al., 1993)

• Identifying sets of linked differential equations (Dzeroski &
Todorovski, 1994; Stolle & Bradley, 1998; Koza et al., 2001)

These combined distinct numeric equations into qualitative
structures, but they remained largely descriptive.

Can we also automate the discovery of quantitative models that
postulate unobserved variables and processes?

22

An Example: The Ross Sea Ecosystem

d[phyto,t,1] = - 0.307 ´ phyto - 0.495 ´ zoo + 0.411 ´ phyto

d[zoo,t,1] = - 0.251 ´ zoo + 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.307 ´ phyto + 0.251 ´ zoo + 0.385 ´ 0.495 ´ zoo - 0.005 ´ detritus

d[nitro,t,1] = - 0.098 ´ 0.411 ´ phyto + 0.005 ´ detritus

Formal accounts of ecosystem
dynamics are often cast as sets of
differential equations.
Here four equations describe the
concentrations of phytoplankton,
zooplankton, nitrogen, and detritus
in the Ross Sea over time.
Such models can match observed
variables with some accuracy.

Constructing such models involves more than isolated equation discovery.
23

A Deeper Account of Ross Sea Dynamics

d[phyto,t,1] = - 0.307 ´ phyto - 0.495 ´ zoo + 0.411 ´ phyto

d[zoo,t,1] = - 0.251 ´ zoo + 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.307 ´ phyto + 0.251 ´ zoo + 0.385 ´ 0.495 ´ zoo - 0.005 ´ detritus

d[nitro,t,1] = - 0.098 ´ 0.411 ´ phyto + 0.005 ´ detritus

As phytoplankton uptakes nitrogen,
its concentration increases and the
nitrogen decreases. This continues
until the nitrogen is exhausted,
which leads to a phytoplankton die
off. This produces detritus, which
gradually remineralizes to replenish
nitrogen. Zooplankton grazes on
phytoplankton, slowing the latter’s
increase and also producing detritus.

This suggests that discovery must move beyond description and prediction.
24

Processes in Ross Sea Dynamics

d[phyto,t,1] = - 0.307 ´ phyto - 0.495 ´ zoo + 0.411 ´ phyto

d[zoo,t,1] = - 0.251 ´ zoo + 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.307 ´ phyto + 0.251 ´ zoo + 0.385 ´ 0.495 ´ zoo - 0.005 ´ detritus

d[nitro,t,1] = – 0.098 ´ 0.411 ´ phyto + 0.005 ´ detritus

As phytoplankton uptakes nitrogen,
its concentration increases and the
nitrogen decreases. This continues
until the nitrogen is exhausted,
which leads to a phytoplankton die
off. This produces detritus, which
gradually remineralizes to replenish
nitrogen. Zooplankton grazes on
phytoplankton, slowing the latter’s
increase and also producing detritus.

25

Processes in Ross Sea Dynamics

d[phyto,t,1] = - 0.307 ´ phyto - 0.495 ´ zoo + 0.411 ´ phyto

d[zoo,t,1] = - 0.251 ´ zoo + 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.307 ´ phyto + 0.251 ´ zoo + 0.385 ´ 0.495 ´ zoo - 0.005 ´ detritus

d[nitro,t,1] = - 0.098 ´ 0.411 ´ phyto + 0.005 ´ detritus

As phytoplankton uptakes nitrogen,
its concentration increases and the
nitrogen decreases. This continues
until the nitrogen is exhausted,
which leads to a phytoplankton die
off. This produces detritus, which
gradually remineralizes to replenish
nitrogen. Zooplankton grazes on
phytoplankton, slowing the latter’s
increase and also producing detritus.

26

A Process Model for the Ross Sea

model Ross_Sea_Ecosystem

variables: phyto, zoo, nitro, detritus
observables: phyto, nitro

process phyto_loss(phyto, detritus)
equations: d[phyto,t,1] = -0.307 ´ phyto

d[detritus,t,1] = 0.307 ´ phyto

process zoo_loss(zoo, detritus)
equations: d[zoo,t,1] = -0.251 ´ zoo

d[detritus,t,1] = 0.251 ´ zoo

process zoo_phyto_grazing(zoo, phyto, detritus)
equations: d[zoo,t,1] = 0.615 ´ 0.495 ´ zoo

d[detritus,t,1] = 0.385 ´ 0.495 ´ zoo
d[phyto,t,1] = -0.495 ´ zoo

process nitro_uptake(phyto, nitro)
equations: d[phyto,t,1] = 0.411 ´ phyto

d[nitro,t,1] = -0.098 ´ 0.411 ´ phyto

process nitro_remineralization(nitro, detritus)
equations: d[nitro,t,1] = 0.005 ´ detritus

d[detritus,t,1] = -0.005 ´ detritus

We can reformulate such an
account by restating it as a
quantitative process model.

Such a model is equivalent
to a standard differential
equation model, but it makes
explicit assumptions about
the processes involved.

Each process indicates that
certain terms in equations
must stand or fall together.

27

Inductive Process Modeling

!!!

Time-series data

Generic processes

Process
models

Organism1 [predator, prey]
Organism2 [predator, prey]

Target variables

!!!

Inductive Process
Modeling

exponential_growth(Organism1)
 rate R = Organism1
 derivatives d[Organism1,t] = a * R
 parameters a = 0.75

holling(Organism2, Organism1)
 rate R = Organism2 * Organism1
 derivatives d[Organism2,t] = b * R,
 d[Organism1,t] = c * R
 parameters b = 0.0024, c = –0.011

!!!

exponential_growth(X [prey]) [growth]
 rate R = X
 derivatives d[X,t] = a * R
 parameters a > 0

holling(X [predator], Y [prey]) [predation]
 rate R = X * Y
 derivatives d[X,t] = b * R, d[Y, t] = c * R
 parameters b > 0, c < 0

Inductive process modeling constructs explanations of time series
from background knowledge (Langley et al., ICML-2002).

Models are stated as sets of differential equations organized into
higher-level processes. 28

Some Generic Processes

process exponential_loss(S, D) process remineralization(N, D)
variables: S{species}, D{detritus} variables: N{nutrient}, D{detritus}
parameters: a [0, 1] parameters: p [0, 1]
equations: d[S, t, 1] = -1 ´ a ´ S equations:

d[D, t, 1] = a ´ S d[N, t, 1] = p ´ D
d[D, t, 1] = -1 ´ p ´ D

generic process grazing(S1, S2, D) process constant_inflow(N)
variables: S1{species}, S2{species}, D{detritus} variables: N{nutrient}
parameters: r [0, 1], g [0, 1] parameters: n [0, 1]
equations: d[S1, t, 1] = g ´ r ´ S1 equations: d[N, t, 1] = n

d[D ,t, 1] = (1 - g) ´ r ´ S1
d[S2, t, 1] = -1 ´ r ´ S1

generic process nutrient_uptake(S, N)
variables: S{species}, N{nutrient}
parameters: t [0, ¥], b [0, 1], µ [0, 1]
conditions: N > t
equations: d[S, t, 1] = µ ´ S

d[N, t, 1] = -1 ´ b ´ µ ´ S

The aquatic ecosystem library
contains about 25 generic
processes, including ones with
alternative functional forms for
loss and grazing processes.

These form the building blocks
from which to compose models.

29

The SC-IPM System

• Uses background knowledge to generate process instances
• Combines them to produce possible model structures, rejecting

ones that violate known constraints
• For each candidate model structure:
▫ Carries out gradient descent search through parameter space

to find good coefficients
▫ Invokes random restarts to decrease chances of local optima
• Returns the parameterized model with lowest squared error or a

ranked list of models

Bridewell and Langley (2010) reported SC-IPM, a system for
inductive process modeling that:

They presented encouraging results with SC-IPM on a variety
of scientific data sets.

30

Some SC-IPM Successes

aquatic ecosystems protist dynamics

hydrology biochemical kinetics 31

Extensions to Inductive Process Modeling

• Inductive revision of quantitative process models
• Asgharbeygi et al. (Ecological Modeling, 2006)

• Hierarchical generic processes that constrain search
• Todorovski, Bridewell, Shiran, and Langley (AAAI 2005)

• An ensemble-like method that mitigates overfitting effects
• Bridewell, Bani Asadi, Langley, and Todorovski (ICML 2005)

• An EM-like method that estimates missing observations
• Bridewell, Langley, Racunas, and Borrett (ECML 2006)

In addition, we have extended the basic framework to support:

These extensions made the modeling framework more robust
along a number of fronts.

32

Recent Progress on Process Modeling

Critiques of SC-IPM

Despite these successes, the SC-IPM system suffers from four
key drawbacks, in that it:
• Evaluates full model structures, so disallows heuristic search
• Requires repeated simulation to estimate model parameters

• Invokes random restarts to reduce chances of local optima

• Despite these steps, it can still find poorly-fitting models

As a result, SC-IPM does not scale well to complex modeling
tasks and it is not reliable.

In recent research, we have developed a new framework that
avoids these problems (Langley & Arvay, AAAI 2015).

99
.9

9
pe

rc
en

t o
f C

PU
 ti

m
e

34

A New Process Formalism

SC-IPM allowed processes with only algebraic equations, only
differential equations, and mixtures of them.

In our new modeling formalism, each process P must include:
• A rate that denotes P’s speed / activation on a given time step
• An algebraic equation that describes P’s rate as a parameter-

free function of known variables
• One or more derivatives that are proportional to P’s rate

This notation has important mathematical properties that assist
model induction.

The new framework also comes closer to Forbus’ (1984) notion
of qualitative processes.

35

A Sample Process Model

Consider a process model for a simple predator-prey ecosystem:
exponential_growth[aurelia]

rate r = aurelia
parameters A = 0.75
equations d[aurelia] = A * r

exponential_loss[nasutum]
rate r = nasutum
parameters B = -0.57
equations d[nasutum] = B * r

holling_predation[nasutum, aurelia]
rate r = nasutum * aurelia
parameters C = 0.0024

D = -0.011
equations d[nasutum] = C * r

d[aurelia] = D * r

Each derivative is proportional to the algebraic rate expression.
36

A Sample Process Model

Consider a process model for a simple predator-prey ecosystem:
exponential_growth[aurelia]

rate r = aurelia
parameters A = 0.75
equations d[aurelia] = A * r

exponential_loss[nasutum]
rate r = nasutum
parameters B = -0.57
equations d[nasutum] = B * r

holling_predation[nasutum, aurelia]
rate r = nasutum * aurelia
parameters C = 0.0024

D = -0.011
equations d[nasutum] = C * r

d[aurelia] = D * r

d[aurelia] = 0.75 * aurelia – 0.011 * nasutum * aurelia
d[nasutum] = 0.0024 * nasutum * aurelia – 0.57 * nasutum

This model compiles into a
set of differential equations

37

Some Generic Processes

Generic processes have a very similar but more abstract format:
exponential_growth(X [prey]) [growth]

rate r = X
parameters A = (> A 0.0)
equations d[prey] = A * r

exponential_loss(X [predator]) [loss]
rate r = predator
parameters B = (< B 0.0)
equations d[prey] = B * r

holling_predation(X [predator], Y [prey]) [predation]
rate r = X * Y
parameters C = (> C 0.0)

D = (< D 0.0)
equations d[predator] = C * r

d[prey] = D * r

As before, these are building blocks for constructing models.
38

RPM: Regression-Guided Process Modeling

This suggests a new approach to inducing process models that
our RPM system implements:

• Generate all process instances consistent with type constraints
• For each process P, calculate the rate for P on each time step
• For each dependent variable X,
• Estimate dX/dt on each time step with center differencing,
• Find a regression equation for dX/dt in terms of process rates
• If r2 for equation is high enough, add it to the process model

This approach factors the model construction task into a number
of tractable components.

A
ss

um
es

 a
ll

va
ria

bl
es

 o
bs

er
ve

d
R

at
e

ex
pr

es
si

on
s a

re
 p

ar
am

et
er

 fr
ee

39

Two-Level Heuristic Search in RPM

Equations for later variables
are constrained by processes
included in earlier ones

40

Behavior on Natural Data

RPM matches the main trends for a simple predator-prey system.

d[aurelia] = 0.75 * aurelia − 0.11 * nasutum * aurelia [r2 = 0.84]
d[naustum] = 0.0024 * nasutum * aurelia − 0.57 * nasutum [r2 = 0.71]

D
e
r
iv

a
t
iv

e
 v

a
lu

e

-200

-100

0

100

200

Time

12 14 16 18 20 22 24

Aurelia (observed) Nasutum (observed)

Aurelia (predicted) Nasutum (predicted)

We compared RPM to SC-IPM, its predecessor, on synthetic data
for a three-variable predator-prey ecosystem.

SC-IPM finds more accurate models with more restarts, but also
takes longer to find them.

M
e
a
n

 s
q

u
a
re

d
 e

rr
o

r

0.0

1.0

2.0

3.0

CPU seconds

10-2 100 102 104

RPM

SC-IPM (10 restarts)

SC-IPM (30 restarts)

SC-IPM (75 restarts)

SC-IPM (150 restarts)

RPM and SC-IPM

SC-IPM

42

We compared RPM to SC-IPM, its predecessor, on synthetic data
for a three-variable predator-prey ecosystem.

RPM found accurate models far more reliably than SC-IPM and,
at worst, ran 800,000 faster than the earlier system.

M
e
a
n

 s
q

u
a
re

d
 e

rr
o

r

0.0

1.0

2.0

3.0

CPU seconds

10-2 100 102 104

RPM

SC-IPM (10 restarts)

SC-IPM (30 restarts)

SC-IPM (75 restarts)

SC-IPM (150 restarts)

RPM and SC-IPM

RPM

SC-IPM

43

C
P

U
 s

e
c
o

n
d

s

0.0

0.5

1.0

1.5

2.0

2.5

Task complexity

10 20

Number of generic processes
Number of variables

With smoothing, RPM can handle 10% noise on synthetic data.

The system also scales well to increasing numbers of generic
processes and variables in the target model.

Handling Noise and Complexity

44

Behavior on Complex Synthetic Data

RPM also finds an accurate model for a 20-organism food chain.

This suggests the system scales well to difficult modeling tasks.

P
o

p
u

la
ti

o
n

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time

0 5 10 15 20 25

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X16

X15

X17

X18

X19

X20

Additional Extensions

Adapting Models to New Settings

In some cases, one can adapt an existing model to observations
rather inducing it from scratch.

Recent work (Arvay & Langley, ACS 2015) has extended RPM to:

• Detect anomalies / identify problematic differential equations

• Reestimate the parameters for these equations

• If necessary, remove or add processes to equations

Model adaptation is appropriate when the environment changes
in some ways but largely remains the same.

Anomaly
detection

Parameter
revision

Structure
revision

47

Effects of Environmental Changes

Changes in the structure and parameters of a few equations leads to
substantial changes in all trajectories.

Initial
model

Revised
model

48

Detecting Anomalous Derivatives

Plotting predicted derivatives against observed values lets RPM
identify equations it should revise.

Here d[x4] is well predicted but other derivatives are divergent.
49

Revising a Process Model

Once RPM has identified equations that make poor predictions,
it revises them by:
• Reestimating their parameters using multivariate regression
• If needed, removing / adding processes from / to each equation

The system handles each differential equation separately, but
changes to earlier ones can constrain later revisions.

Studies with synthetic data
show that model adaptation
scales much better than
induction from scratch.

50

Selective Induction of Process Models

In even more recent work, we have developed SPM, a system
that extends RPM further by:

• Delaying binding of some variables in generic processes until it
finds evidence of a relationship;

• Combining sampling of processes with backward elimination to
induce more complex equations;

• Finding multiple equations for each dependent variable and then
searching for ways to combine them into consistent models.

These extensions give SPM greater coverage, scalability, and
reliability than its predecessor (Arvay & Langley, ACS 2016).

51

Increased Model Coverage

RPM could not induce some chemical process models because
processes have the same rate; SPM avoids this problem by:

• Instantiating initially only variables in a generic process that
determine its rate expression;

• Binding other variables that a process influences only when
finding equations for their derivatives.

These extensions let SPM discover chemical reaction networks
that RPM could not handle.

Table 2: Differential equations for a chemical system with six
variables that interact through eight distinct reactions. SPM
can reconstruct this model, with minor parameter differences,
from time series that it generates whereas RPM cannot.

dX1/dt = 1.1 ·X2 ·X3� 1.6 ·X1
dX2/dt = 1.8 ·X1� 1.5 ·X2� 1.0 ·X2 ·X3 + 0.9 ·X5 ·X6
dX3/dt = 1.9 ·X1 + 1.1 ·X2� 1.3 ·X3� 1.3 ·X2 ·X3
dX4/dt = 0.9 ·X2 + 0.8 ·X3� 2.5 ·X4 ·X5 + 0.5 ·X5 ·X6
dX5/dt = 0.9 ·X3� 1.8 ·X4 ·X5 + 0.9 · Z
dX6/dt = 2.3 ·X4 ·X5� 0.8 ·X5 ·X6� 0.5 ·X6

Z that keeps other variables from reaching a steady state. An-
other chemical data set involved seven chemicals participat-
ing in 12 reactions, including a time-varying influx.

SPM encountered no difficulty inducing either reaction
network from multivariate trjectories with at least 80 time
steps. In the first case, the system generated 22 process in-
stances from three generic processes, then took 1,000 samples
of six rate terms to identify each component equation. In the
second case, SPM generated 46 processes from four generic
processes, then took 15,000 samples of ten rate terms. Runs
on the first data set required 14.7 ± 0.21 CPU seconds on
average, whereas those for the second took a mean of 111.8
± 0.6 seconds. In contrast, RPM generated 63 process in-
stances from analogous generic structures, and it could not
induce either target model. The reason, as explained earlier,
was that its greedy algorithm combines with eager binding of
variables in processes, leading it to include incorrect process
instances it could not retract during the later stages of model
construction. These runs demonstrate that SPM can induce
chemical process models that its predecessor cannot handle.

4.2 Scalable Induction of Differential Equations

As noted earlier, SPM’s approach to finding individual differ-
ential equations differs substantially from that of its predeces-
sor. RPM carries out exhaustive search for the simplest equa-
tion with an acceptable r2 score, starting with one-term can-
didates and adding terms until reaching a maximum number.
The new system combines sampling of rate terms (processes)
with backward elimination to identify subsets that are good
predictors of derivatives. This suggests a second hypothesis:

• As the number of terms in a target equation increases, their

induction time for SPM grows more slowly than for RPM.

To test this prediction, we examined the behavior of their
modules for equation induction in isolation. We generated
synthetic data in which derivatives were a linear function of
different numbers – from one to ten – of processes with ran-
dom valued rates. The random data ensured that the terms in
each equation were not highly correlated, thus containing re-
dundant information. We ran each system ten times on each
equation and measured the CPU time needed to find it. We
fixed the number of samples at 10,000 and the number of sam-
pled rate terms at 13 for all SPM runs.

Figure 3 presents the results of this experiment. RPM actu-
ally finds simpler equations more rapidly than SPM, as they

�

�
�
�
��
�
�
�
	

�

���

�����

�����

�����

�����

�����

�����

	����

����

�������������������������������

� ��

��

��

Figure 3: Average time for RPM and SPM to find target equa-
tions, in CPU seconds, with different numbers of rate terms
(processes).

are consistent with its simplicity bias. However, this changes
for equations with five processes, at which point SPM be-
comes faster. In fact, there were so many combinations of
nine-term equations that RPM could not finish generating
them, making it unable to complete its runs. Growth in CPU
time for SPM was linear, as it depended on the number of
samples and equations specified by the user.

SPM’s sampling approach does not guarantee that it will
find the appropriate equation. The correct set of rates must
appear in the sampled set and feature selection must correctly
identify them as relevant. We can calculate the probability
that the correct combination of rates will appear in a sample
as

�T
S

��T�S
S�R

�
/
�T
R

�
, where T is the total number of processes,

R is the number of rates in the target equation, and S is the
size of the sample. Additional sampling increases the odds of
finding an equation but increases CPU time further, which is a
natural tradeoff. Nevertheless, it seems clear the new system
scales better to equation complexity than its precursor.

4.3 Improved Induction of Consistent Models

Another difference between our approach to process model
induction and its precursor lies in their search for consistent
models. Rather than relying on a greedy method aided by pro-
cess constraints, SPM first finds a set of alternative equations
for each dependent variable and then uses depth-first search
to find all ways to combine them into models. This suggests
a final hypothesis about the two systems:

• SPM induces a more complete set of consistent process

models than RPM and has greater chances of recovering

the target model.

This claim seems straightforward to test, but we have already
seen that RPM’s greedy search is sufficient to find complex
ecological models, and its inability to induce chemical reac-
tion networks is due mainly to eager binding of variables in
processes. However, we can modify SPM’s parameters to ap-
proximate greedy search through the space of process models.

Thus, we ran a parametric study in which we compared the
behavior of the multi-equation SPM with a variant that finds
only one differential equation for each dependent variable.
We ran both versions on the same synthetic data sets used
earlier, some generated from predator-prey models and others

52

RPM’s exhaustive search for equations becomes intractable if the
target involves more than five terms.

Instead, SPM combines backward elimination of rate terms with
repeated sampling, giving time linear with equation complexity.

Better Scaling to Complexity

C
P

U
 s

e
c
o

n
d

s

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

Task complexity

5 10

RPM

SPM

53

Greater Reliability of Induction

RPM’s greedy search sometimes led it down dead ends; SPM
avoids this problem by:
• Finding multiple differential equations for each target variable;
• Carrying out exhaustive depth-first search for ways to combine

them into consistent models.

This strategy increased SPM’s probability of inducing one or
more models.

A. ARVAY AND P. LANGLEY

Table 3. The probability of finding a target model by greedy and multi-equation variants of SPM on ecological
and chemical data sets, along with average CPU time.

Greedy SPM Multi-Equation SPM

Percent CPU Percent CPU

Nas-Aur 100 0.004±.002 100 0.004±.001
Aquatic Ecosyst 100 0.03±.012 100 0.12±.007
Predator Prey 6a 100 0.01±.003 100 0.03±.004
Predator Prey 6b 100 0.83±.004 100 2.63±.008
Predator Prey 20 100 0.81±.028 100 4.10±.100

Chemistry A 0 1.17±2.03 100 14.7±.210
Chemistry B 0 1.65±1.27 100 111.8±.610

Thus, we ran a parametric study in which we compared the behavior of the multi-equation SPM
with a variant that finds only one differential equation for each dependent variable. We ran both
versions on the same synthetic data sets used earlier, some generated from predator-prey models
and others from chemical reaction networks. For each condition, we ran the systems 20 times and
recorded both the total number of consistent models induced, as well as the percentage of times they
found the target model. Table 2 shows that, on the five ecosystem data sets, each variant reliably
found a single model that was equivalent to the target. In contrast, on the two chemical data sets,
the ‘greedy’ version was unable to find the correct model, whereas the full SPM generated several
consistent models, in each case finding the target. Naturally, the full variant took longer to run (14.7
and 111.8 CPU seconds, respectively) than the greedy version (1.17 and 1.65 CPU seconds), but
there is a natural tradeoff between time and coverage. The chemistry B data set was particularly
challenging and needed more time to find consistent models reliably. We should emphasize that all
additional models SPM found were internally consistent in terms of processes and had comparable
r2 scores. One cannot distinguish them given the data and the system’s background knowledge.

5. Related Research

We have already explained how SPM builds on a long tradition of research on inductive process
modeling. Our system addresses the same basic discovery task as other work in this paradigm, al-
though it takes advantage of ideas introduced by Langley and Arvay (2015) to make the problem
more tractable. We have retained RPM’s assumptions that each process has an associated rate that
is determined by an algebraic expression and derivatives that are proportional to this rate. This idea
comes originally from Forbus’s (1984) Qualitative Process Theory, which used a similar notation for
qualitative models of physical systems. SPM introduces improved mechanisms for inducing quan-
titatve process models, but it benefits from many earlier ideas. The use of background knowledge in
inductive logic programming is similar in spirit but very different in practice, as it acquires models
from relational rather than numeric data and it typically relies on separate-and-conquer methods that
are inappropriate for linked sets of differential equations.

10

54

Concluding Remarks

Related and Future Research

Our approach builds on ideas from earlier research, including:
• Qualitative representations of scientific models (Forbus, 1984)

• Inducing differential equations (Todorovski, 1995; Bradley, 2001)

• Heuristic search and multiple linear regression
• Delayed commitment and feature selection

Our plans for extending the SPM system include:
• Handling parametric rate expressions (gradient descent)
• Dealing with unobserved variables (iterative optimization)
• Discovering new processes (search for rate expressions)

These should extend SPM’s coverage and usefulness even further.

56

Promising Applications

Scalable methods for process model induction would be useful
in many practical settings, including:

• Elucidating new reaction pathways in biochemistry

• Understanding ecological dynamics of human microflora

• Identifying epidemiological models of contagious diseases

• Designing reaction pathways for chemical production

• Designing metabolic pathways for synthetic biology

Computational tools for scientific discovery should let us not
only interpret observations, but generate new behavior.

57

Summary Comments

• Incorporates a formalism that is familiar to many scientists

• Uses background knowledge about the problem domain
• Produces meaningful results from moderate amounts of data

• Generates models that explain, not just describe, observations

• Can scale well both to many processes and complex models

Inductive process modeling is a novel and promising approach
to discovering scientific models that:

Although our work has focused on ecological modeling, the key
ideas extend to chemistry and other domains.

For more information, see http://www.isle.org/process/ .

58

In recent years, a new line of research of inducing differential
equation models has emerged:
• Brunton, Proctor, and Kutz (PNAS, 2016)
• Chen, Rubanova, Bettencourt, and Duvenau (NeurIPS, 2019)
• Cranmer et al. (NeurIPS, 2020)
• Iten, Metger, Wilming, Rio, and Renner (Phy Rev Letters, 2020).
• Raissi and Karniadakis (J Comp Physics, 2018)
• Schmidt and Lipson (Science, 2009)
• Wang, Maddix, Wang, Faloutsos, and Yu (NeurIPS Wkshp, 2020)
• Wu and Tegmark (Physical Review E, 2019)
• Zhang and Lin (Proc Royal Society, 2018)

This work emphasizes statistics more than older efforts, but also
searches a space of models stated in scientific formalisms.

Other Results on Scientific Discovery

59

Big Data and Scientific Discovery

• Scaling to large and heterogeneous data sets

• Scaling to large and complex scientific models

• Scaling to large spaces of candidate models

Digital collection and storage have led to rapid growth of data
in many areas.
The big data movement seeks to capitalize on this content, but,
in science at least, must address three distinct issues:

Handling large data sets has been widely studied and poses the
fewest challenges.
We need far more work on the second two issues, for which the
methods of computational scientific discovery are well suited.

60

Conclusions

Scientific discovery does not involve any mystical or irrational
elements; we can study and even partially automate it.
Our explanation of this fascinating set of mechanisms relies on:

• Carrying out search through a space of laws or models

• Using operators for generating structures and parameters

• Guiding search by data and by knowledge about the domain

Systems discover laws and models stated in the formalisms and
concepts familiar to scientists.
This paradigm has already started to aid the scientific enterprise,
and its importance will only grow with time.

61

Classic Publications on Scientific Discovery

Bridewell, W., & Langley, P. (2010). Two kinds of knowledge in scientific discovery.
Topics in Cognitive Science, 2, 36–52.

Bridewell, W., Langley, P., Todorovski, L., & Dzeroski, S. (2008). Inductive process
modeling. Machine Learning, 71, 1–32.

Dzeroski, S., Langley, P., & Todorovski, L. (2007). Computational discovery of scientific
knowledge. In S. Dzeroski & L. Todorovski (Eds.), Computational discovery of
scientific knowledge. Berlin: Springer.

Langley, P. (1981). Data-driven discovery of physical laws. Cognitive Science, 5,
31–54.

Langley, P. (2000). The computational support of scientific discovery. International
Journal of Human-Computer Studies, 53, 393–410.

Langley, P., & Arvay, A. (2015). Heuristic induction of rate-based process models. Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. 537–544).
Austin, TX: AAAI Press.

Langley, P., Simon, H. A., Bradshaw, G. L., & Zytkow, J. M. (1987). Scientific discovery:
Computational explorations of the creative processes. Cambridge, MA: MIT Press.

Langley, P., & Zytkow, J. M. (1989). Data-driven approaches to empirical discovery.
Artificial Intelligence, 40, 283–312.

In Memoriam

Herbert A. Simon
(1916 – 2001)

In 2001, the field of computational scientific discovery lost two of
its founding fathers.

Both were interdisciplinary researchers who published in computer
science, psychology, philosophy, and statistics.
Herb Simon and Jan Zytkow were excellent role models for us all.

Jan M. Zytkow
(1945 – 2001)

